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Abstract— Human indoor localization was previously imple-
mented using wireless sensor networks at the cost of sensing
infrastructure deployment. Motivated by high density of smart-
phones in public spaces, we propose to use a robot-assisted
localization system in which the low-cost Kinect sensor and
smartphone-based acoustic relative ranging are used to localize
moving human targets in indoor environments. An extended
Kalman filter based localization algorithm is developed for real-
time dynamic position estimation. We present both simulations
and real robot-smartphone experiments demonstrating the
performance with a localization accuracy of approximately
0.5m.

I. INTRODUCTION

Human indoor localization has recently received increas-
ing research attention due to many real-world applications
such as location detection of medical personnel or firemen,
pattern of passenger flow in airports or shopping malls.
Motivated by the fact that smartphones are gradually woven
into people’s social life and usually a high density of them
exist in public spaces, we propose an indoor localization
system using smartphones and a mobile robot with low cost
sensors such as the Kinect sensor. We develop new dynamic
Kalman filter based indoor human localization algorithms
and validate it in real robot-smartphone experiments.

A. Related Work

The astonishing development of wireless network such
as radio frequency identification (RFID), WLAN and ultra-
wideband has remarkably facilitated human indoor local-
ization techniques using either specialized or minimally
modified infrastructure [1]. A RFID based location sens-
ing system was developed in [2]. By scanning the data
emitted from active RFID tags, a scene analysis methods
was adopted to compare the signal strength perceived from
the target tag and reference tags (deployed as landmarks).
The position of the target was estimated by the k-nearest
neighbor algorithm with around 1m average accuracy. In
[3], an online probabilistic RFID map and adaptive Kalman
filter were applied to obtain localization with accuracy from
0.5m to 5m, depending on the received signal strength (RSS)
noise level and the number of RSS samples collected. The
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authors in [4] presented the so-called RADAR localization
system utilizing WLAN network. The target position was
estimated by searching the signal strength map built in offline
modeling phase for the closest match of signal patterns. The
position accuracy was around 2m to 3m. The Horus system
proposed in [5] used the probabilistic method to estimate
target positions. The radio map was represented in the form
of signal strength probability histogram for each access point.
The average localization accuracy of 0.5m was reported. The
COMPASS system [6] considered the orientation of targets in
the online positioning phase, where the problem of blocking
effects of human body encountered in [4] was mitigated.
The average positioning error was approximately 1.65m.
The use of smartphones as radio signal strength indications
(RSSI) in WLAN system was studied in [7], in which
the average error about 2m was reported. Overall, existing
wireless indoor localization methods based on WiFi signature
maps have non-negligible errors in position estimation, and
high localization accuracy is usually obtained at the cost of
intensive deployment of sensing infrastructure.

Localization is also a classic topic studied in navigation
of autonomous mobile robots. Kalman filter based local-
ization [8], [9], grid-based Markov localization [10] and
Monte Carlo localization [11], [12] provide solutions for
either local position tracking or global position estimation.
A more challenging problem of simultaneous localization
and mapping (SLAM) arises when the robot has no prior
knowledge of the environment map [13]. Recent attention
has been drawn to the cases that only relative range to the
landmark can be detected. In [14], the range-only SLAM
using extended Kalman filter was investigated where prior
knowledge of landmark location is partially known. The
authors in [15] represented the implementation of range-only
SLAM on underwater vehicles. In [16], the authors proposed
an initialization method where the location of landmarks
were estimated using a “voting scheme”, and the vehicle
was driven along an optimized path to perform landmark
initialization. Experiments on SLAM of mobile robots in
indoor environments were presented in [17], where a wireless
sensor network was deployed for either robot-to-beacon or
beacon-to-beacon range measurement. The estimation error
of the robot and landmark positions was reported less than
0.2m and 0.5m, respectively. Generally speaking, robot local-
ization and SLAM offer a better estimation accuracy, but the
developed algorithms rely on sensing data from expensive
sensors such as laser range finders that cannot be directly
extended to human indoor localization.
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B. Contribution

In this paper, we propose a novel human localization
system that uses a mobile robot and smartphones to localize
moving persons. The system consists of a self-localized
robot tracking human targets using its onboard Kinect sensor,
and a smartphone based acoustic ranging subsystem. An
extended Kalman filter (EKF) based dynamic positioning
algorithm is developed and integrated with the acoustic
relative ranging subsystem to provide real time localization
of the moving human target. Experimental results show the
estimation accuracy reaching 0.5m. The main contribution of
the paper is that by taking advantage of both low-cost 3D
vision sensor and smartphone-based acoustic relative ranging
techniques, we provide an efficient solution for indoor human
localization and motion tracking without complex hardware
infrastructure.

II. SYSTEM CONFIGURATION
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Fig. 1: Overview of robot-assisted indoor human cooperative
localization scheme.

Motivated by the popularity of smartphones in public
spaces, we propose a cooperative indoor localization system
using smartphones and a mobile robot with low cost sensors.
As shown in Fig. 1, the localization system consists of an
autonomous mobile robot equipped with a Kinect 3D vision
sensor and acoustic ranging devices (a microphone and a
speaker), and smartphones (with microphones and speakers)
with persons to be localized. The self-localized robot is able
to simultaneously localize and track human targets by: 1)
following the person named “Human Target 1” in the figure,
and keeping certain distances from him/her using the Kinect
vision sensor, 2) using the location of the robot and Human
Target 1 to localize Human Target 2 or Human Target 3
utilizing acoustic ranging measurements, and 3) using the
estimated location of the robot and any one of the human
targets to localize any additional human targets.

The nature of the proposed localization scheme is that the
robot and the Human Target 1 being followed at different
time during their motion are treated as a bunch of landmarks,
and the positions of other human targets can be estimated

relying on acoustic range measurements between the robot
and the targets. Conventional triangulation based methods
need at least three beacons to uniquely localize a target in
a two dimensional space [8]. We fully utilize the dynamic
nature of the robot tracking system, and treat the position of
the robot at different time as a group of beacons. The ranging
between the robot, Human Target 1, and Human Target 2 at
different time makes it possible to estimate the position of
Human Target 2 via triangulation. Without loss of generality,
we discuss localization between the robot, Human Targets 1
and 2 in Group 1, while the method is capable of localizing
additional human target once the robot and one of the target
positions are available. In the next section, we present our
human indoor localization scheme.

III. ROBOT-ASSISTED HUMAN INDOOR LOCALIZATION

The proposed human indoor localization system is com-
posed of 1) robot self-localization, 2) human following
using Kinect vision sensor, 3) acoustic relative ranging, and
4) dynamic target position estimation. A functional block
diagram of the proposed localization system is shown in
Fig. 2. While techniques on robot self-localization, human-
following using the Kinect vision sensor are available, the
main challenge of the proposed system lies in the devel-
opment of an acoustic relative ranging subsystem, and a
dynamic position estimation algorithm to localize the target
person. Next, we describe each of the components, and then
present the overall algorithm in this section.

Fig. 2: Functional block diagram of the localization system.

A. Robot Self-Localization

Although localization and mapping in an unknown or
partially known environment can be done using existing
SLAM techniques, we focus our main attention to human
localization, and assume known indoor environments with
a prior-obtained map, which is a reasonable assumption
for many indoor environments (such as shopping malls,
museums, airports, or student dorms). We also assume the
robot is equipped with onboard sensors and is able to localize
itself in the known indoor environment. Robot localization
technique such as Monte Carlo localization algorithm [18]
can be used, which fuses sensory data from proprioceptive
and exteroceptive sensors to estimate the pose of the robot
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recursively. The robot self-localization module takes input
from sensors (such as odometry, gyroscope and laser range
finder), and output the robot’s current position ξr(k).

B. Kinect-based Human Following

As mentioned earlier, we use the low-cost Kinect vision
sensor to track human Target 1. The Kinect sensor detects the
centroid of the moving human target and returns the relative
range to it. The deviation from the reference ranging and
bearing to the human target serves as the control input, which
drives the robot to keep the centroid in the middle of the
robot vision field and maintain a given distance to the human
target. The autonomous human-following program [19] can
be used for this functional module, which returns the distance
from robot to Target 1, dr1, and the position of Target 1,
ξt1(k).

C. Acoustic Relative Ranging

The acoustic ranging subsystem consists of the robot
and smartphones, which have microphones and speakers
as onboard acoustic devices. Each of the robot and the
target smartphones plays a pre-designed beep file in a pre-
determined order, and simultaneously records the received
beep files and send the files to the robot for data processing
and relative distance measurement. In principle, ranging can
be done by time-of-arrival (TOA) method to estimate the
sound travel time from one device to another. However,
challenges exist in preventing interference from different
phones, the lack of clock synchronization, and overcoming
uncertainties in emitting and detection. The acoustic ranging
subsystem returns the relative distances between the robot
and the two targets, dr1(t), dr2(t), and the distance between
Targets 1 and 2, d12(t). Since dr1 is already available from
the Kinect-based human following subsystem, only dr2 and
d12 are returned from the acoustic ranging module. We
describe the details of the proposed acoustic ranging method
in the following.

1) Acoustic Ranging Signal Design: The acoustic sig-
nal, referred to as beep, consists of several evenly spaced,
monotonic signal beeps. The frequency, number of beeps and
spacing between them in the ranging signal directly impact
the accuracy, measurement latency, noise susceptibility and
intrusiveness to humans, so these parameters are carefully
selected for the design of the beep in our system. As most of
background noise (e.g. human conversation 300Hz - 3400Hz,
music 50Hz-15kHz) is concentrated in lower frequency band,
we use high frequency signal in the 16-20kHz range, which
is less susceptible to noise and easier to filter. The ranging
accuracy is directly proportional to the number of beeps
but adds measurement latency. We used 4 beeps for our
experiments with beep interval of 5000 samples. We use
16kHz signal in our experiments since human ears are less
sensitive to higher frequency signals, which makes our beep
signal less intrusive. Considering the sampling frequency
of 44.1 kHz (used in our experiments) and nominal sound
velocity of 340 m/s, the minimum resolution for acoustic
relative ranging is 0.77 cm.

2) Acoustic Signal Detection Methods: Traditional cor-
relation method discussed in [20] has larger measurement
errors. We adopt the change point detection method to
detect first instance of arrival of the beep signal, which
was proposed in two coauthors’ (Yang and Chen) previous
work [21], [22]. The method requires the beep signal to
be uniformly distributed in a narrow frequency band, and
ensures better measurement accuracy over traditional cor-
relation based method. Specifically, we first take the Short
Time Fourier Transform (STFT) of the acquired signal to
filter out the low frequency background noise and extract the
signal at the beep frequency band. The first instance of strong
deviation from the normal background noise is detected
next, which indicates the instance of arrival of the beep
signal. Under different low and high noise environments,
change point detection method can achieve within 15cm
measurement accuracy in 300cm testing distances (see Figure
7 of [22]).

3) Multi-agent Scheduling and Measurement: Our acous-
tic ranging subsystem extends existing two-agent scheme
[20] to multiple agents, i.e., three agents including the robot
and Targets 1 and 2. Unlike the fixed-window method used
in the recent work [22], where a fixed time window is
scheduled to each agent in emitting the beep signal, we
propose a new beep-signal scheduling scheme that relies
on an active request and acknowledgement method. In our
method, the robot sends the command to Targets 1 and 2
to start recording and waits for their acknowledgement. In
the next step, the robot sends the command to Targets 1 and
2 to play the beep signal sequentially and waits for their
acknowledgement once the target phone completes playing
the beep signal file. The multi-agent scheduling scheme is
illustrated in Fig. 3. The active beep-signal scheduling and
data acquisition cycle results in faster data processing than
existing fixed time-window scheduling [22], thus results in
shorter ranging measurement and decreased ranging latency,
which is important in our real time human localization
system.

D. Dynamic Target Position Estimation

A key component of the localization system is the dynamic
positioning algorithm running on the robot to determine the
target phone position. We propose an extended Kalman filter
(EKF) based position estimation algorithm, which fuses the
sensing data from acoustic ranging, Kinect range measure-
ment, and robot self-localization, and returns the position
estimate of the human Target 2. We formulate the dynamic
position problem as follows:

Denote the positions of the robot, Target 1, and Target
2 by ξr(t), ξt1(t), and ξt2(t), respectively. The distances
between the robot and Target 1, the robot and Target 2,
Target 1 and Target 2 are represented by dr1(t), dr2(t),
and d12(t), respectively, as shown in Fig. 1. Our problem
is to design a dynamic positioning algorithm to determine
the position of Target 2, ξt2(t) , using the observed relative
ranging information, dr1(t), dr2(t), d12(t), and the robot
self-localization information.
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Fig. 3: Multi-agent data acquisition. R: Robot, T1: Target 1, T2: Target 2.

1) Motion Model: The motions of involved human agents
are not known a priori. Under the assumption that the
sampling rate is relatively high compared to the moving
speed of the persons, it is fair to consider that their motions
is driven by white noise acceleration process that can be
mathematically expressed as ξ̈ = ω(t). In other words, the
velocity of the human agents are Wiener processes, changing
over time as white noise ω(t) ∼ N(0,Q) with zero-mean
and variance Q. As the robot always follows a human agent,
the motion of robot is consequently considered as white
noise acceleration process consistent with the motion of the
human agent. Specifically, the kinematic equations that are
used to predict the state from white Gaussian noise ωi(t) are
expressed as follows:

ξ̈r = ωr(t), ξ̈t1 = ωt1(t), ξ̈t2 = ωt2(t) (1)

where ξr ∈ R2, ξt1 ∈ R2, ξt2 ∈ R2 represent the position
of the robot, target 1, and Target 2, respectively. The corre-
sponding discrete-time process model is in the form:

ξ(k + 1) = ξ(k) + ∆Tv(k)

v(k + 1) = v(k) + ω(k) (2)

where ξ(k) = [ξr(k), ξt1(k), ξt2(k)]
T , υ(k) =

[υr(k),υt1(k),υt2(k)]
T , ω(k) = [ωr(k),ωt1(k),ωt2(k)]

T ,
and ∆T is the sampling period. Denote the state vector of the
system x = [ξr(k), ξt1(k), ξt2(k),υr(k),υt1(k),υt2(k)]

T .
The system motion is re-written in the folloiwng linear
discrete-time state propagation form:

x(k + 1) = Fx(k) +Gω(k) (3)

where F is the state transition matrix that can be obtained
from system equation (2), ω(k) is the vector that represents a
white Gaussian noise process with zero mean and covariance
Q = E[ω(k) · ω(k)T ].

2) Observation Model: We denote the system observation
vector received at time-step k as:

z(k) = [dT (k), ξr(k), ξt1(k)]
T (4)

where ξr(k) is the position of the robot determined from
robot self-localization (discussed in Section III-A), ξt1(k)
is the position of Target 1 obtained by Kinect-based hu-
man following (discussed in Section III-B), and d(k) =
[dr1(k), dr2(k), d12(k)]

T is the vector of relative distances
between the robot and targets obtained by acoustic range

measurement (discussed in Section III-C) and Kinect-based
human following, that is,

dr1 = ∥ξr − ξt1∥ =
√

(ξr − ξt1)T · (ξr − ξt1),

dr2 = ∥ξr − ξt2∥ =
√

(ξr − ξt2)T · (ξr − ξt2),

d12 = ∥ξt1 − ξt2∥ =
√
(ξt1 − ξt2)T · (ξt1 − ξt2). (5)

We have the observation model as:

z(k) = h(x(k)) + ν(k) (6)

where h(·) describes the observation function that relates
the measurement to the system states; ν(k) is the vector
of a white Gaussian noise with zero mean and covariance
R = E[ν(k) · ν(k)T ].

3) EKF-Based Dynamic Positioning Algorithm: The
EKF-based dynamic positioning algorithm takes the input
from the observation vector z(k), by the steps of initializa-
tion, prediction, and updating, it returns the estimate of the
Target 2 position, ξ̂t2. The algorithm is described below.

• Prediction
With the given motion model, the system process is propa-
gated by the following equation:

x̂(k + 1|k) = F · x̂(k) (7)

P̂ (k + 1|k) = F · P (k) · F T +G ·Q ·GT (8)

where the x̂(k) and P (k) are the posterior state estimates
and associated covariance matrix, respectively.

• Update
After an observation is taken, the posterior estimates of the
state vector and covariance are updated by:

x̂(k+1) = x̂(k+1|k)+K · [z(k+1)−h(x̂(k+1))] (9)

P (k + 1) = (I −K ·H(k)) · P (k + 1|k) (10)

where

K = P (k+1|k)·HT (k)·[H(k)·P (k+1|k)·HT (k)+R]−1

(11)
is the Kalman gain, and H is the Jacobian matrix of observa-
tion function h(·) valuated at current prior state x̂(k+1|k),
that is H(k) = [Hd(k),Hp(k)]

T , where

Hd,[ij](k) =
∂hi

∂xj
|x̂(k+1|k), i = 1, ..., 3; j = 1, ..., 12 (12)
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Hp =
[
I4×4 04×8

]
(13)

The system noise covariance Q of the motion model (3)
and the measurement noise covariance R of the observa-
tion model (6) are carefully selected. We consider constant
system noise covariance Q which is known a priori. We
consider different measurement noise covariance in R due
to different noises and uncertainties associated with different
devices (such as different sensors used for acoustic ranging,
robot self-localization, and human following), which can be
obtained offline by running the corresponding subsystems.
That is,

R =

 Rd 0 0
0 Rr 0
0 0 Rt1

 (14)

where Rd ∈ R3×3, Rr(k) ∈ R2×2 and Rt1(k) ∈ R2×2

denote the covariances of the range measurement noise,
the robot position estimate, and Target 1 position estimate,
respectively.

Remark 1: Given the range-only measurement at each
time-step, the probability density representing the possible
position of Target 2 is multimodal that has two peaks.
However, with the prior target position estimation predicted
from the previous step, the multimodal density can be ap-
proximated as a unimodal Gaussian distribution. Therefore,
the target location is uniquely determined real time by the
recursive prediction and update process in the above EKF
algorithm.

E. Overall Robot-Assisted Localization Algorithm

After describing each of the component subsystem above,
we can now present our overall human indoor localization
algorithm. Since different sensors return data at different
frequencies, we select a common sampling rate for data fus-
ing. For example, the robot self-localization and the Kinect
human following subsystem return data at a frequency of
30Hz, but the acoustic ranging subsystem is slow and returns
relative ranging measurement about every 5 seconds due to
latency related in beep signal detection and transmission
as discussed in Section III-C. To address the multi-rate
fusion problem, the proposed localization algorithm fills in
prior estimate generated from the previous measurement and
the motion model before the acoustic ranging subsystem
returns ranging measurement data. The overall algorithm is
described in Algorithm 1.

IV. EXPERIMENTAL VALIDATION
We present both Matlab simulation and real robot experi-

ments in this section.

A. Computer Simulations

1) Simulation Setup: We simulated Algorithm 1 using
the motion model (3) and the observation model (6),
and assuming that the output from robot self-localization,
Kinect human-follower, and acoustic ranging modules return
true values with added noises. The process noise ω(k)
and observation noise ν(k) are zero-mean with covari-
ance Q = (0.5m)2I6 and R = (0.1m)2I7, respectively,

Algorithm 1 Human Indoor Localization Algorithm
1: repeat
2: // robot self localization
3: input: odometry zp(k) and gyro zg(k)
4: call function robot pose ekf ⇐ Algorithm in Section

III-A
5: output: ξ̂r(k)
6: // human follower
7: input: Kinect scan zk(k), ξ̂r(k)
8: call function human follower ⇐ Algorithm in Sec-

tion III-B
9: output: ξ̂t1(k) and dr1(k)

10: // acoustic ranging
11: input: recorded sound files
12: if all sound files are received then
13: call function acoustic ranging ⇐ Algorithm in

Section III-C
14: else
15: go to Line 19
16: end if
17: output: d12(k), dr2(k)
18: // EKF-based position estimation
19: Initialize first estimation of x̂(0) with covariance

P (0)
20: predict: prior state estimate x̂(k|k − 1) and prior

covariance P (k|k − 1) using equation (7) and (8)
21: input: position ξ̂r(k) and ξ̂t1(k)
22: if relative ranging d(k) is received then
23: update: Kalman gain K using equation (11)
24: posterior estimate x̂(k), P (k) using equation (9)

and (10)
25: else
26: prior estimate x̂(k|k − 1) → x̂(k), P (k|k − 1) →

P (k)
27: end if
28: return: x̂(k), P (k)
29: next time step k ← k + 1
30: output: ξ̂t2(k)
31: until time out

where I6 and I7 are the identity matrix of six-dimension
and seven-dimension, respectively. The true initial position
of the robot and human targets are selected as ξ(0) =[
21 3 20 4 16 1

]T
. Human Targets 1 and 2 are

set to move in a approximately 10m × 21.4m space with
a linear velocity of 0.8m/s in average. We assume that the
first belief of the position estimate is initialized as ξ̂(0) =[
5 15 16 5 5 −10

]T
, while the covariance matrix

is given as P (0) = 10I12. The velocity estimate of the three
agents are initialized as v̂(0) = 0.6I6.

2) Simulation Results: Fig. 4a shows the true and esti-
mated trajectories of the robot and targets in our laboratory
environment with hallway and a student room. We can see
that the positioning algorithm is able to track the motion of
two moving persons, and the position estimation gradually
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converges with a small error. Fig. 4b shows the estimation
error over time, where the estimation error is calculated using
the Euclidean distance between the actual and estimated
positions. It can be seen that after the algorithm converges,
the median and 90% errors for Target 1 are 0.12m and 0.2m,
and for Target 2 are 0.35m and 0.8m, respectively.
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Fig. 4: Simulation results: (a) The true and estimated trajec-
tories of the robot and human targets; (b) Estimation error
over time steps.

B. Real Robot-Smartphone Experiments

1) Experimental Setup: The test platform is a Turtle-
bot mobile robot equipped with a Kinect 3D sensor and
an on-board ASUS Eee PC 1215N laptop which has an
Intel R⃝AtomTMD525 Dual Core Processor. The Kinect gen-
erates 180◦ laser scans horizontally at the rate of 30Hz.
Odometry and EVAL-ADXRS620Z 300◦/sec yaw rate gy-
roscope are also equipped to detect the linear and angular
displacement. The robot is operated on Robot Operating
System (ROS), where Algorithm 1 was implemented. The
HTC EVO smartphones with Android operating system (OS)
are used by the human targets for emitting and recording
beep signals. The microphones of the smartphones respond
to the designed beep sound with 16kHz frequency. We used
4 beeps with an interval of 5000 samples in the beep signal.
The Android application for acoustic data acquisition on
smartphones is developed in Java. Program developed in C++
has been used for data acquisition, scheduling control and
processing of acquired sound files for ranging calculation
on the robot. Data between different platforms (ROS and
Android OS) is exchanged using sockets over WiFi to ensure
compatibility between different programs. The experiments
are conducted in a 30 by 24 square feet lab area as shown in
Fig. 5, which is the rightmost area of the floor plan shown
in Fig. 4a. 10 positions are marked as the ground truth along
each trajectory of the robot and human targets. Human Target

1 and Target 2 move at an average speed of 0.09m/s and
0.12m/s, respectively.

To characterize the uncertainties in the acoustic ranging
measurement, we use experimental data presented in two
co-authors’ previous work [22], where ranging errors under
different environments (lab, train station, mall, airport) are
shown (in Figure 7 of [22]). It was shown that the ranging
errors within 3m testing distances in lab environments for
HTC phone are under 0.15m. In our experiments, the co-
variance parameter Rd in equation (14) are set to be Rd =
(0.1m)2I3 and (0.2m)2I3 in two experiments, respectively.
The other two covariance parameters in (14) are chosen as
Rr = Rt1 = (0.2m)2I2.
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True positions

Fig. 5: Real-robot experimental setup.
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Fig. 6: Experimental results of true and estimated trajectories
using the proposed Algorithm 1. Noise covariance is chosen
as: Rd = (0.1m)2I3,Rr = Rt1 = (0.2m)2I2.

2) Experimental Results: Fig. 6 illustrates results from the
experiments, where the estimated trajectories of the robot,
Target 1, and Target 2 approach true positions as time
evolves. Fig. 7 shows temporal propagation of localization
errors under different covariances of range measurement
Rd. It can be seen that the average localization error is
around 0.25m for Target 1 and 0.5m for Target 2 when
acoustic ranging covariance is Rd = (0.1m)2I3. When the
acoustic ranging uncertainty increases to Rd = (0.2m)2I3,
the average localization error for Target 2 is around 0.85m.

3) Performance Discussion: From the experimental re-
sults, the human localization error reaches 0.5m for a person
(Target 2) moving at an average speed of 0.12m/s. The
localization accuracy is better than most WiFi-based indoor
localization methods reported that depend on sensing infras-
tructure deployment. Compared to the recent smartphone-
based indoor human localization work [22], we achieve
better localization accuracy and provide dynamic position
estimation, while [22] focuses on stationary smartphone
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Fig. 7: Localization error over time with the covariance of
range measurement Rd = (0.1m)2I3 in (a) and Rd =
(0.2m)2I3 in (b).

localization. We expect that the localization performance is
improvable considering the following issues:

a) The accuracy of target positioning largely depends
on the result of robot self-localization. In our presented
experiments, the robot is localized by fusing sensor data
from the odometry and gyroscope, which has non-negligible
localization error in large areas. We will use other sensors
such as a laser range finder for robot self-localization in
future experiments.

b) The acoustic ranging subsystem has significant delays.
In our presented experiments, the sound collection takes 3s,
data transmission takes 1s roughly, and range calculation
takes 1.5s, which results in about 5.5s latency in range
measurement. In our future work, we will optimize the
ranging subsystem and parameters to decrease the latency,
and improve the dynamic position algorithm to deal with
the latency more efficiently.

V. CONCLUSIONS
In this paper, we developed a cooperative human indoor

localization system utilizing a self-localized mobile robot
and smartphones. An EKF-based dynamic localization al-
gorithm was developed to fuse distance-only measurements
from both the Kinect 3D vision sensor and smartphone-
based acoustic ranging, so that the targets position can be
recursively estimated. Experiments were conducted using a
Turtlebot and two HTC smartphones, which showed that the
positioning algorithm was able to locate and track moving
human targets with a localization error around 0.5m. The
localization performance is comparable to recent indoor
localization methods using WiFi signature maps, without
the cost of deploying intensive sensing infrastructure. In
the future work, extensive experiments will be conducted
to evaluate system performances in various environments.
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